Abstract and Introduction
Abstract
Study Design: A single-center prospective observational study.
Objective: To clarify the usefulness of a novel scoliosis screening method using a 3-dimensional (3D) human fitting application and a specific bodysuit.
Summary of Background Data: Several scoliosis screening methods, such as scoliometer and Moiré topography, are available for detecting scoliosis. In the present study, a novel screening method for scoliosis using a 3D human fitting application and a specific bodysuit was developed.
Patients and Methods: Patients with scoliosis or suspected scoliosis, patients with non-scoliosis, and healthy volunteers were enrolled. They were divided into "non-scoliosis" and "scoliosis" groups. The scoliosis group was further subdivided into "mild," "moderate," and "severe-scoliosis" groups. Patients' characteristics and Z values, which were calculated by a 3D virtual human body model created by a 3D human fitting application and a specific bodysuit to evaluate trunk asymmetry caused by scoliosis, were compared between the non-scoliosis and scoliosis groups or among the non, mild, moderate and severe-scoliosis groups. Finally, the optimal cutoff of the Z value was determined to detect moderate to severe scoliosis using receiver operating characteristic curve analysis.
Results:A total of 101 patients were included. The non-scoliosis group consisted of 47 patients, and the scoliosis group included 54 patients, with 11, 31, and 12 patients in the mild, moderate, and severe-scoliosis groups, respectively.