AI and Machine Learning in Healthcare for the Clueless
This site is intended for healthcare professionals

COMMENTARY

AI and Machine Learning in Healthcare for the Clueless

; Jenine John, MD

Disclosures

April 10, 2023

2

Recorded March 6, 2023. This transcript has been edited for clarity.

Robert A. Harrington, MD: Hi. This is Bob Harrington on theheart.org | Medscape Cardiology, and I'm here at the American College of Cardiology meetings in New Orleans, having a great time, by the way. It's really fun to be back live, in person, getting to see friends and colleagues, seeing live presentations, etc. If you've not been to a live meeting yet over the course of the past couple of years, please do start coming again, whether it's American College of Cardiology, American Heart Association, or European Society of Cardiology. It's fantastic.

Putting that aside, I've been learning many things at this meeting, particularly around machine learning, artificial intelligence (AI), and some of the advanced computational tools that people in the data-science space are using.

I'm fortunate to have an expert and, really, a rising thought leader in this field, Dr Jenine John. Jenine is a machine-learning research fellow at Brigham and Women's Hospital, working in Calum MacRae's research group.

What she talked about on stage this morning is what do you have to know about this whole field. I thought we'd go through some of the basic concepts of data science, what machine learning is, what AI is, and what neural networks are.

How do we start to think about this? As practitioners, we're going to be faced with how to incorporate some of this into our practice. You're seeing machine-learning algorithms put into your clinical operations. You're starting to see ways that people are thinking about, for example, Can the machine read the echocardiogram as good as we can? What's appropriate for the machine? What's appropriate for us? What's the oversight of all of this?

We'll have a great conversation for the next 12-20 minutes and see what we can all learn together. Jenine, thank you for joining us here today.

Jenine John, MD: Thank you for having me.

From Epidemiology to Machine Learning

Harrington: Before we get into the specifics of machine learning and what you need to know, give me a little bit of your story. You obviously did an internal medicine residency. You did a cardiology fellowship. Now, you're doing an advanced research fellowship. When did you get bitten by the bug to want to do data science, machine learning, etc.?

John: It was quite late, actually. After cardiology fellowship, I went to Brigham and Women's Hospital for a research fellowship. I started off doing epidemiology research, and I took classes at the public health school.

Harrington: The classic clinical researcher.

John: Exactly. That was great because I gained a foundation in epidemiology and biostatistics, which I believe is essential for anyone doing clinical research. In 2019, I was preparing to write a K grant, and for my third aim, I thought, Oh, I want to make this complex model that uses many variables. This thing called machine learning might be helpful. I basically just knew the term but didn't know much about it.

I talked to my program director who led me to Dr Rahul Deo and Dr Calum MacRae's group that's doing healthcare AI. Initially, I thought I would just collaborate with them.

Harrington: Have their expertise brought into your grant and help to elevate the whole grant? That's the typical thing to do.

John: Exactly. As I learned a bit more about machine learning, I realized that this is a skill set I should really try to develop. I moved full-time into that group and learned how to code and create machine-learning models specifically for cardiac imaging. Six months later, the pandemic hit, so everything took a shift again.

I believe it's a shift for the better because I was exposed to everything going on in digital health and healthcare startups. There was suddenly an interest in monitoring patients remotely and using tech more effectively. I also became interested in how we are applying AI to healthcare and how we can make sure that we do this well.

Harrington: There are a couple of things that I want to expand on. Maybe we'll start this way. Let's do the definitions. How would you define AI and its role in medicine? And then, talk about a subset of that. Define machine learning for the audience.

AI vs Machine Learning

John: Artificial intelligence and machine learning, the two terms are used pretty much synonymously within healthcare, because when we talk about AI in healthcare, really, we're talking about machine learning. Some people use the term AI differently. They feel that it's only if a system is autonomously thinking independently that you can call it AI. For the purposes of healthcare, we pretty much use them synonymously.

Harrington: For what we're going to talk about today, we'll use them interchangeably.

John: Yes, exactly.

Harrington: Define machine learning.

John: Machine learning is when a machine uses data and learns from the data. It picks up patterns, and then, it can basically produce output based on those patterns.

Harrington: Give me an example that will resonate with a clinical audience. You're an imager, and much of the work so far has been in imaging.

John: Imaging is really where machine learning shines. For example, you can use machine learning on echocardiograms, and you can use it to pick up whether this patient has valvular disease or not. If you feed an AI model enough echocardiograms, it'll start to pick up the patterns and be able to tell whether this person has valvular disease or not.

Harrington: The group that you're working with has been very prominent in being able to say whether they have hypertrophic cardiomyopathy, valve disease, or amyloid infiltrative disease.

There are enough data there that the machine starts to recognize patterns.

John: Yes.

Harrington: You said that you were, at the Harvard School of Public Health, doing what I'll call classic clinical research training. I had the same training. I was a fellow 30-plus years ago in the Duke Databank for Cardiovascular Diseases, and it was about epidemiology and biostatistics and how to then apply those to the questions of clinical research.

You were doing very similar things, and you said something this morning in your presentation that stuck with me. You said you really need to understand these things before you make the leap into trying to understand machine learning. Expand on that a little bit.

John: I think that's so important because right now, what seems to happen is you have the people — the data scientists and clinicians — and they seem to be speaking different languages. We really need more collaboration and getting on the same page. When clinicians go into data science, I think the value is not in becoming pure data scientists and learning to create great machine-learning models. Rather, it's bringing that clinical thinking and that clinical research thinking, specifically, to data science. That's where epidemiology and biostatistics come in because you really need to understand those concepts so that you understand which questions you should be asking. Are you using the right dataset to ask those questions? Are there biases that could be present?

Harrington: Every week, as you know, we all pick up our journals, and there's a machine-learning paper in one of the big journals all the time. Some of the pushback you'll hear, whether it's on social media or in letters to the editors, is why did you use machine learning for this? Why couldn't you use classical logistic regression?

One of the speakers in your session, I thought, did a nice job of that. He said that often, standard conventional statistics are perfectly fine. Then there are some instances where the machine is really better, and imaging is a great example. Would you talk to the audience a little bit about that?

John: I see it more as a continuum. I think it's helpful to see it that way because right now, we see traditional biostatistics and machine learning as completely different. Really, it's a spectrum of tools. There are simple machine-learning methods where you can't really differentiate much from statistical methods, and there's a gray zone in the middle. For simpler data, such as tabular data, maybe.

Harrington: Give the audience an example of tabular data.

John: For example, if you have people who have had a myocardial infarction (MI), and then you have characteristics of those individuals, such as age, gender, and other factors, and you want to use those factors to predict who gets an MI, in that instance, traditional regression may be best. When you get to more complex data, that's where machine learning really shines. That's where it gets exciting because they are questions that we haven't been able to ask before with the methods that we have. Those are the questions that we want to start using machine learning to answer.

  • 2

Comments

3090D553-9492-4563-8681-AD288FA52ACE
Comments on Medscape are moderated and should be professional in tone and on topic. You must declare any conflicts of interest related to your comments and responses. Please see our Commenting Guide for further information. We reserve the right to remove posts at our sole discretion.

processing....